Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960-2016, Connecticut | | Coal
Thousand
Short Tons | Natural
Gas ^a
Billion
Cubic Feet | Petroleum | | | | | | | Biomass | | | | D | | ļ | | |--------------|--------------------------------|--|------------------------|------------------|--------------------------------|----------------------|--------------------|--------------------|--|----------------------------------|-----------------------|------------------------------|----------------------|--------------------------------|------------------------------|----------------------|----------------------| | | | | Distillate
Fuel Oil | HGL b | Motor
Gasoline ^c | Residual
Fuel Oil | Other d | Total | Hydro-
electric
Power ^{e,f} | | Losses | | Solar ^{f,i} | Retail
Electricity
Sales | | Electrical
System | | | Year | | | | Thousand Barrels | | | | | Million
kWh | Wood and
Waste ^{f,g} | and Co-
products h | Geo-
thermal ^f | Million
kWh | | Net
Energy ^{f,j} | Energy
Losses k | Total ^{f,j} | | 1960
1965 | 866
776 | 7
12 | 1,665
1,561 | 355
564 | 243
248 | 11,950
13,180 | 1,756
2,059 | 15,968
17,612 | 26
9 | == | == | | NA
NA | 2,837
3,862 | | | == | | 1970 | 142 | 15 | 1,968 | 890 | | 13,710 | 2,576 | 19,413 | 3 | | | | NA
NA | | | | | | 1975 | 29 | 16 | 1.944 | 1.280 | 36 | 9.124 | 1 950 | 14.334 | 7 | | | | NA | 5,050 | | | | | 1980
1985 | 0 | 20
19 | 3,235
1,197 | 785
499 | 66
225 | 6,683
2,202 | 1,520
2,755 | 12,290
6,879 | 6 | | | | NA
NA | | | | | | 1990 | 1 | 25 | 1,209 | 548 | | 1,415 | 2,147 | 5,582 | 8 | == | == | == | (s) | 6,100 | == | == | == | | 1995 | Ó | 25
32
32 | 852 | 355 | 195 | 755 | 2,456 | 4,613 | 6 | | | | (s) | 5,913 | | | | | 1996 | 0 | 32 | 811 | 247 | 223 | 964 | 2,221 | 4,465 | 8 | | | | (s) | 5,928 | | | | | 1997
1998 | 0 | 35
32 | 847
780 | 295
391 | 232
138 | 387
308 | 1,894
1,347 | 3,655
2,964 | 8 | | | | (s)
(s) | 5,919
5,838 | | | | | 1999 | ŏ | 32
32 | 783 | 249 | 210 | 405 | 1.537 | 3,184 | ŏ | | | | (s) | 5,836 | | | | | 2000 | 0 | 32 | 859 | 526 | 233 | 380 | 1,566 | 3,564 | 0 | | | | (s) | 5,811 | | | | | 2001
2002 | 0 | 26
29 | 1,026
848 | 697
271 | 536
499 | 598
347 | 1,111 | 3,967
2,995 | 0 | | | | (s) | 5,572
5,370 | | | | | 2003 | ő | 24 | 1,754 | 770 | 560 | 598
347
764 | 1,031
2,197 | 6,046 | ő | | | | (s) | 5,366 | | == | | | 2004 | 0 | 21 | 1,091 | 997 | 634 | 1,103 | 2,294 | 6,120 | 0 | | | | (s) | 5,358 | | | | | 2005
2006 | 1 | 20
22 | 930
979 | 2,080
2,136 | 561
578 | 1,109
590 | 2,655
2,406 | 7,334
6,689 | 0 | == | | == | (s)
(s) | 5,153
4,926 | | | == | | 2006 | 0 | 23 | 896 | 1,546 | 445 | 303 | 1,496 | 4,776 | 0 | | | | (s) | 5,433 | | | | | 2008 | ŏ | 23
23
25 | 764 | 53
82 | 369 | 145 | 507 | 1.839 | ŏ | | | | 1 | 4,371 | | | | | 2009 | 0 | 25 | 823 | 82 | 353 | 145
168
25 | 2,296
R 2,424 | 3,723
R 3,747 | 0 | | | | 1 | 3,692 | | | | | 2010
2011 | 0 | 24
26 | 668
654 | 136
144 | 495
482 | 25
17 | R 2,424 | R 3,468 | 0 | | | | 1 | 3,713
3,668 | | | | | 2012 | 0 | 27 | 487 | 52 | 481 | 8 | H 1 749 | R 2 776 | 0 | == | == | == | 2 | | == | == | == | | 2013 | 0 | 30 | 619 | 76 | 493 | 4 | H 2.127 | R 3,318 | 0 | | | | 4 | 3,490 | | | | | 2014
2015 | 0 | 28
26 | 544
493 | 154
218 | 373
371 | 5 | R 2,091
R 1,567 | R 3,167
R 2,656 | 0 | | | == | 7
10 | 3,515
3,432 | | | == | | 2016 | 0 | 24 | 506 | 139 | 373 | 2 | 1,997 | 3,017 | 0 | == | == | == | 16 | | == | == | == | | | | | | | | | | | Trillion B | tu | | | | | | | | | 1960 | 22.8 | 7.5 | 9.7 | 1.5 | 1.3 | 75.1 | 11.1 | 98.7 | 0.3 | 7.6 | NA | NA | NA | | 146.6 | 23.9 | 170.5 | | 1965
1970 | 20.4
3.4 | 12.7
14.9 | 9.1
11.5 | 2.3
3.3 | 1.3
1.4 | 82.9
86.2 | 13.0
15.8 | 108.6
118.2 | 0.1 | 8.7
9.6 | NA
NA | NA
NA | NA
NA | 13.2
17.4 | 163.7
163.5 | 31.5
42.0 | 195.1
205.5 | | 1975 | 0.7 | 15.6 | 11.3 | 4.7 | 0.2 | 57.4 | 12.3 | 85.9 | (s)
0.1 | 10.3 | NA | NA | NA | 17.2 | 129.8 | 41.3 | 171.2 | | 1980 | 0.0 | 20.8 | 18.8 | 2.9 | | 42.0 | 9.3 | 73.3 | 0.1 | 18.5 | NA | NA | NA | | 132.8 | 48.7 | 181.6 | | 1985
1990 | 0.1 | 19.5
26.3 | 7.0
7.0 | 1.8
2.0 | | 13.8
8.9 | 17.7
13.7 | 41.4
33.0 | 0.1
0.1 | 21.6
2.1 | 0.0
0.0 | NA
0.0 | NA
(a) | 20.9 | 103.5
82.3 | 47.8
48.5 | 151.3
130.8 | | 1995 | (s)
0.0 | 33.1 | 7.0
5.0 | 1.3 | | 4.7 | 15.8 | 27.8 | 0.1 | 2.1 | 0.0 | 0.0 | (s)
(s) | 20.2 | 84.0 | 46.5 | 130.5 | | 1996 | 0.0 | 33.4 | 4.7 | 0.9 | 1.2 | 6.1 | 14.2 | 27.0 | 0.1 | 5.8 | 0.0 | 0.0 | (s) | 20.2 | 86.4 | 46.6 | 133.0 | | 1997 | 0.0
0.0 | 35.5 | 4.9 | 1.1 | 1.2
0.7 | 2.4 | 12.0 | 21.6 | 0.1 | 6.1 | 0.0 | 0.0
0.0 | (s) | 20.2 | 83.5 | 45.8 | 129.3 | | 1998
1999 | 0.0 | 33.3
32.8 | 4.5
4.6 | 1.4
0.9 | | 1.9
2.5 | 8.2
9.4 | 16.8
18.5 | 0.0
0.0 | 5.1
5.3 | 0.0
0.0 | 0.0 | (s) | 19.9
19.9 | 75.1
76.4 | 44.9
44.0 | 120.0
120.4 | | 2000 | 0.0 | 33.1 | 5.0 | 1.9 | 1.2 | 2.4 | 9.6 | 20.0 | 0.0 | 5.0 | 0.0 | 0.0 | (s) | 19.8 | 77.9 | 50.7 | 128.7 | | 2001 | 0.0 | 26.2 | 6.0 | 2.5 | 2.8 | 3.8 | 7.0 | 22.0 | 0.0 | 5.1 | 0.0 | 0.0 | (s) | 19.0 | 72.3 | 41.9 | 114.2 | | 2002
2003 | 0.0
0.0 | 29.8
24.2 | 4.9
10.2 | 1.0 | | 2.2
4.8 | 6.6 | 17.2
34.8 | 0.0 | 3.6 | 0.0
0.0 | 0.0
0.0 | (s) | 18.3
18.3 | 68.9
80.9 | 39.0 | 107.9
122.3 | | 2003 | 0.0 | 24.2
21.0 | 6.3 | 2.7
3.5 | 2.9
3.3 | 4.8
6.9 | 14.1
14.8 | 34.8 | 0.0 | 3.6
3.8 | 0.0 | 0.0 | (s)
(s) | 18.3 | 78.0 | 41.4
38.6 | 116.7 | | 2005 | (s)
0.0 | 21.0 | 5.4 | 7.4 | 2.9 | 7.0 | 17.1 | 39.8 | 0.0 | 3.9 | 0.0 | 0.0 | (s) | 17.6 | 82.2 | 34.6 | 116.8 | | 2006 | 0.0 | 22.2 | 5.7 | 7.6 | | 3.7 | 15.3 | 35.3 | 0.0 | 3.4 | 0.0 | 0.0 | (s) | 16.8 | 77.7 | 32.4 | 110.1 | | 2007
2008 | 0.0 | 23.3
23.0 | 5.2
4.4 | 5.4
0.2 | 2.3
1.9 | 2.5
0.9 | 9.5
3.0 | 24.9
10.4 | 0.0
0.0 | 3.6
3.4 | 0.0
0.0 | 0.0 | (s) | 18.5
14.9 | 70.3
51.7 | 37.3
29.3 | 107.6
81.1 | | 2008 | 0.0 | 23.0
25.2 | 4.4 | 0.2 | 1.9 | 1.1 | 1/10 | 22.8 | 0.0 | 2.1 | 0.0 | 0.0
0.0 | (s) | 14.9 | 63.6 | 29.3 | 87.2 | | 2010 | 0.0 | 24.7 | 3.9 | 0.5 | 2.5 | 0.2 | R 4 = 7 | R 22 7 | 0.0 | Riso | 0.0 | 0.0 | (s) | 12.7 | R 65 1 | 23.8 | R 88 9 | | 2011 | 0.0 | 27.0 | 3.8 | 0.6 | 2.4 | 0.1 | R 14.0
R 11.3 | R 20.9 | 0.0 | R 4.4
R 4.4 | | 0.0 | (s) | 12.5 | R 64.8
R 61.2 | 21.5 | ^H 86.3 | | 2012
2013 | 0.0
0.0 | 27.8
30.5 | 2.8
3.6 | 0.2
0.3 | | 0.1
(s) | P 11.3
P 13.8 | R 16.8
R 20.1 | 0.0
0.0 | нии. | 0.0 | 0.0
0.0 | (s)
(s) | 12.2
11.9 | R 67.0 | 22.4
22.0 | R 83.6
R 89.0 | | 2013 | 0.0 | 29.2 | 3.1 | 0.6 | | (s) | | H 10 1 | 0.0 | H ₄ 3 | 0.0 | 0.0 | 0.1 | 12.0 | H 64 6 | 21.6 | R 86 2 | | 2015 | 0.0 | 26.3 | 2.8 | 0.8 | 1.9 | (s) | H 10.0 | H 15.6 | 0.0 | R 4.3
4.3 | 0.0 | 0.0
0.0 | 0.1
0.1 | 11.7
11.5 | R 58.0
59.1 | 20.8
20.2 | R 78.8
79.3 | | 2016 | 0.0 | 24.9 | 2.9 | 0.5 | 1.9 | (s) | 12.9 | 18.2 | 0.0 | | 0.0 | | | | | | | column. Beginning in 2009, includes a small amount of wind energy consumed by industrial utility-scale facilities. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they are mostly derived, but should be counted only once in net energy and total. K Incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical ^a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. ^b Hydrocarbon gas liquids, include natural gas liquids and refinery olefins. ^c Beginning in 1993, includes fuel ethanol blended into motor gasoline. There is a discontinuity in this time series between 2014 and 2015 because of coverage. See Technical Notes, Section 4. ^d Includes asphalt and road oil, aviation gasoline, kerosene, lubricants, petroleum coke, and the "other petroleum statuted" is expressed. products" category. See Technical Notes, Section 4. ^e Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable mere is a discommunity in this unite series between 1988 and 1989 due to the expander energy sources beginning in 1989. 9 Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. I losses and congruidute form the prediction of fuel etheral. Losses and co-products from the production of fuel ethanol. Solar thermal and photovoltaic energy. Excludes a small amount of solar thermal energy consumed as heat that is included in the residential sector. For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes in methodology. kWh = Kilowatthours. — = Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The industrial sector includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. • The continuity of these data series estimates may be affected by the changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes.